MPI03 – Mesures électriques

I. Réaliser des circuits électriques :

- 1°) A l'aide du logiciel de simulation Crocodile physics : simuler sur la même page :
 - un circuit en série comportant une batterie de tension continue 12 V, deux lampes à filament de puissance 10 W et un interrupteur simple.
 - un autre circuit comportant en série la même batterie de tension continue 12 V, une des lampes et l'interrupteur simple. Disposer la deuxième lampe à filament en dérivation par rapport à la première.
 - Fermer les 2 interrupteurs. Observer la simulation. Copier-coller les schémas des deux circuits dans un logiciel de dessin (Paint), puis disposer chaque schéma dans le cadre associé du compterendu. Noter les différences observables.
 - Ouvrir les interrupteurs. Augmenter la tension des batteries de 1V. Fermer les interrupteurs. Observer. Renouveler l'opération jusqu'à atteindre 16 V.
 - Compléter la conclusion dans le compte-rendu.
 - Vous disposez d'un conducteur ohmique de résistance $R = \dots \Omega$. Est-il possible de l'insérer dans un circuit série comportant un générateur de tension continue réglable allant de 0V à 15 V ? On réalisera la simulation pour les différentes tensions du générateur avant de répondre.
 - Tenir compte de cette simulation pour la suite.
- 2°) Réaliser le circuit comportant en série un générateur de tension continue réglable de 0 à 15 V, un interrupteur et le conducteur ohmique donné par le professeur. Ce conducteur sera appelé AB par la suite. Faire vérifier le circuit. Ne pas mettre sous tension pour l'instant.

II. Mesurer des grandeurs électriques :

Pour mesurer des grandeurs électriques, on utilise un multimètre.

 $Visionner\ la\ présentation\ du\ multimètre.\ D\'emo\ flash: sous\ D/MPI/Multimetre/index.htm\ ou\ \underline{http://pedagogie.ac-montpellier.fr:8080/disciplines/scphysiques/academie/PCMFOAD/4eme/Multimetre/index.htm}$

En vous aidant de cette animation, complétez le compte-rendu en légendant la photo du multimètre du lycée.

Observer l'animation sur l'utilisation en ampèremètre puis en voltmètre.

Faire les exercices interactifs d'application. Compléter le compte-rendu.

Dans le circuit réalisé au I. 2°) placer convenablement :

- un multimètre en ampèremètre pour mesurer l'intensité du courant qui traverse le conducteur ohmique AB
- un autre multimètre en voltmètre pour mesurer la tension aux bornes du conducteur ohmique AB. Faire vérifier. Dans le compte-rendu faire le schéma à l'aide de l'outil de dessin.

III. Etude du conducteur ohmique :

Modifier progressivement la tension aux bornes du générateur pour faire varier U_{AB} (la tension aux bornes du conducteur) de 0 à 10 V par pas de 0.5 V.

Placer les résultats dans un tableau

$U_{AB}(V)$	0,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	•••
$I_{AB}(A)$										

 1°) Tracer, sur papier millimétré ou quadrillé (à joindre au compte-rendu) le graphe $U_{AB}=f(I_{AB})$. Indiquer précisément les échelles.

Compléter le compte-rendu.

2°) Utilisation d'un tableur :

Ouvrir le tableur excel. Reporter les valeurs du tableau précédent dans les 2 premières lignes.

- Suivre les indications du professeur pour obtenir le graphique $U_{AB}=f(I_{AB})$ ou regarder l'animation : sous D/MPI/graphe_excel.swf ou http://www.lyc-valdedurance.ac-aix-marseille.fr/extra/didacticiels/excel-graphe.swf
- $Suivre \ les \ indications \ pour \ obtenir \ l'équation \ du \ graphique, \ sous \ D/MPI/model_excel.swf \ ou \ \underline{http://www.lyc-valdedurance.ac-aix-marseille.fr/extra/didacticiels/excel-model.swf}$

Imprimer le graphique obtenu. Le comparer à celui tracé à la main.

IV. Mesure de résistances à l'aide de l'ohmmètre :

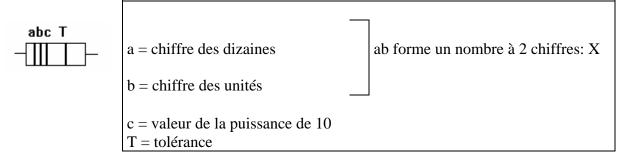
L'ohmmètre est une fonction du multimètre.

Son symbole est le suivant:

On le sélectionne en mettant l'index en position Ω .

Toute mesure de résistance doit être effectuée lorsque le conducteur est hors de tout circuit.

- sélectionner la fonction ohmmètre.
- placer entre les 2 bornes de l'ohmmètre le conducteur étudié précédemment.
- comparer à la constante trouvée au I ainsi qu'à la valeur indiquée par le constructeur.


V. Lois d'associations de conducteurs ohmiques :

Réaliser l'association en série des 2 conducteurs ohmiques de résistance R_1 et R_2 . Mesurer à l'aide de l'ohmmètre la résistance R de l'association. Compléter le compte-rendu

Réaliser l'association parallèle des 2 conducteurs ohmiques R_1 et R_2 . Mesurer la résistance R de l'association. Compléter le compte-rendu

VI. Mesures de résistances à l'aide du code des couleurs :

Les conducteurs ohmiques utilisés en électronique se présentent sous forme de petits cylindres. La valeur de leur résistance R est codée par le constructeur à l'aide d'anneaux colorés.

La valeur de la résistance s'exprime en ohms sous la forme $R=X.10^{\rm C}$

La correspondance entre couleurs et chiffres est donnée par le tableau ci-contre.

La tolérance indique la précision avec laquelle le constructeur garantit la valeur de R telle que : R(1-T%) < R < R(1+T%)

į	1		
couleur de l'anneau	valeur de a,b,c	tolérance	
noir	0	20%	
marron	1	1%	
rouge	2	2%	
orange	3		
jaune	4		
vert	5		
bleu	6		
violet	7		
gris	8		
blanc	9		
argent	-1	10%	
or	-2	5%	